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Abstract
We first give a quick survey of the realization of symmetries of quantum
systems in the various formalisms of quantum mechanics: traditional (Hilbert
space), algebraic (C*-algebras), rigged Hilbert spaces, *-algebras of unbounded
operators, partial *-algebras of closable operators. Then we describe in some
detail the concept of partial inner product spaces (PIP-spaces) and operators
on them. Finally, we examine various classes of operators on PIP-spaces that
allow a correct realization of symmetries.

PACS numbers: 03.65.Ca, 03.65.Fd, 03.65.Ta, 02.20.−a, 02.30.−f, 02.30.Tb

1. How to describe a quantum system and its symmetries?

The mathematical description of a quantum system has evolved considerably since the creation
of quantum mechanics in the 1920s. This is indeed a striking example of cross-fertilization
between two disciplines. As a matter of fact, the whole edifice rests on two basic principles:

(i) The superposition principle, which implies that the set of states of the system has a linear
structure;

(ii) The notion of transition amplitude, given by an inner product: A(ψ1 → ψ2) = 〈ψ2|ψ1〉.
The latter in turn yields transition probabilities by P(ψ1 → ψ2) = |〈ψ2|ψ1〉|2.

1.1. The traditional approach

Combining these two basic principles implies that the set of states of the system is a positive
definite inner product space, that is, a pre-Hilbert space. Then mathematical efficiency leads
to the traditional Hilbert space formulation of Schrödinger, Dirac, von Neumann, etc, namely,

• States are represented by rays in a Hilbert space H;
• Observables are represented by self-adjoint operators in H.
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In this context, a symmetry is defined as a bijection between states that preserves the absolute
values of all transition amplitudes. According to Wigner, a symmetry τ is realized by a
unitary or an anti-unitary operator in H [24]. Then, if the system admits a symmetry group
{τg, g ∈ G}, with G a Lie group, the latter is realized by a strongly continuous unitary
(projective) representation U(g) of G in H (Wigner–Bargmann) [6, 24].

In order to free the theory from particular realizations, linked to specific models, and
to focus on the basic structure, namely, the algebra of observables and states on it, Haag
and Kastler [16] introduced in 1960 an abstract version of the theory. Here observables are
realized by self-adjoint elements of a C*-algebra A and states by (normalized) continuous
linear functionals on A. Then a symmetry τ is realized by a *-automorphism σ of A and
a symmetry group {τg, g ∈ G} by a continuous *-automorphism group {σg, g ∈ G} of A.
This more abstract language, exploiting the deep mathematical theories of C*-algebras and
von Neumann algebras, soon became the standard approach to the mathematically rigorous
description of physical systems with infinitely many degrees of freedom.

In this framework, a concrete Hilbert space representation is obtained via the Gel’fand–
Naĭmark–Segal (GNS) construction. Thus we are back to the traditional approach, with
observables represented by bounded operators. As for symmetries, the question is now
whether they are unitarily implemented in the GNS Hilbert space.

1.2. The rigged Hilbert space approach

Although standard, the traditional approach still has difficulties. Unbounded operators are
often more natural than bounded ones (e.g. representatives of a Lie algebra, such as symmetry
generators), but then one may have domain problems. Also not all self-adjoint operators can
be interpreted as physical observables. Neither do all states play the same role. Indeed, there
are ‘physical’ states, that can actually be prepared, and ‘generalized’ states, associated with
quantum measurements.

Assume all ‘relevant’ observables have a common, dense, invariant domain in H. Then
one gets a rigged Hilbert space (RHS)

� ⊂ H ⊂ �×, (1.1)

where � is the set of all physical states and �×, the set of continuous antilinear functionals
on �, consists of the generalized states associated with measurement devices [1, 9, 10].

The problem, of course, is how to build �. A solution, introduced by Roberts [21], is to
start from a distinguished set O of labeled observables with a physical interpretation (how does
one measure it?) and a mathematical definition (as a self-adjoint operator in H). The elements
of O, which characterize the system (physics): position, momentum, energy (Hamiltonian),
. . . , are supposed to have a common, dense, invariant domain D in H (mathematics). If one
equips D with a suitable (intrinsic) topology, one obtains a RHS (1.1) defined by the system.

The simplest example in nonrelativistic quantum mechanics is that of a particle, either
free or in a nice potential V. The labeled observables are position q, momentum p and energy
H = −p2/2m + V. The corresponding RHS is S ⊂ L2(R3) ⊂ S×, where S is Schwartz’s
space of smooth fast decaying functions and S× is the space of tempered distributions.

What about symmetries in this RHS approach [1]? In the standard realization, a symmetry
group G is realized by a unitary representation U of G in H. For consistency, one has to require
that U maps physical states into physical states and similarly for the measuring devices. Thus
one should have two other realizations of U, in addition to U itself, which acts in H, namely:

• U� acting in � (active point of view);
• U×

�
acting in �× (passive point of view).
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The equivalence of the two points of view is manifested by the requirement that U� and U×
�

are contragradient of each other, that is,〈
U×

�
(g)F

∣∣φ〉 = 〈F |U�(g
−1)φ〉, ∀ g ∈ G,φ ∈ �,F ∈ �×,

or, equivalently,〈
U×

�
(g)F

∣∣U�(g)φ
〉 = 〈F |φ〉, ∀ g ∈ G,φ ∈ �,F ∈ �×.

This corresponds to the unitarity of U acting in H:

〈U(g)f |U(g)h〉 = 〈f |h〉, ∀ g ∈ G, f, h ∈ H.

This definition implies that U×
�

is an extension of both U� and U, as it should in view of (1.1).
As in the standard approach, there is a corresponding abstract version of the theory,

in which the observable algebra A is assumed to be a *-algebra of unbounded operators.
The mathematical technology is available thanks to the work of many authors (Powers [20],
Lassner [18], Schmüdgen [23], etc), including the GNS construction and the description of
*-automorphism groups and derivations of A.

1.3. The partial operator algebra approach

However, more difficulties may arise. Indeed, it is not always possible, or convenient, to find
an invariant common dense domain for all observables of the system. However, if one drops
this requirement, the product of two such operators A,B need no longer be defined. Namely,
AB makes sense only if the range of B is contained in the domain of A. This suggests extending
one step further the description of A, and taking it as a partial *-algebra of closable operators
on H. Once again, the mathematical technology is available, including the GNS construction
and the notions of *-automorphism groups and derivations [5]. In fact most concepts familiar
in the theory of C*-algebras extend to this wider framework, but at the price of severe technical
complications. Thus this approach, while intellectually satisfying, is not directly applicable
for quantum mechanics, we need something simpler and more natural. Our answer to that
query is the notion of partial inner product spaces (PIP-spaces), which we will describe in the
following.

2. Partial inner product spaces

Let us go back to the basic principles stated in section 1. From the discussion made above, it
is clear that not all states are equally accessible. Hence the transition is possible only between
certain pairs of states. Thus one should use a partial inner product to modelize transition
amplitudes, and one is led to a PIP-space, a structure introduced some time ago by Grossmann
and the present author [2, 4].

2.1. Basic definitions

The basic question may be stated as follows: given a vector space V and two vectors f, g ∈ V,

when does their inner product make sense? A way of formalizing the answer is given by the
idea of compatibility.

Definition 2.1. A linear compatibility relation on a vector space V is a symmetric binary
relation # which preserves linearity:

f #g ⇐⇒ g#f, ∀ f, g ∈ V,

f #g, f #h 	⇒ f #(αg + βh), ∀ f, g, h ∈ V, ∀α, β ∈ C.

3
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As a consequence, for every subset S ⊂ V, the set S# = {g ∈ V : g#f,∀ f ∈ S} is a vector
subspace of V and one has

S## = (S#)# ⊇ S, S### = S#.

Thus one gets the following equivalences:

f #g ⇐⇒ f ∈ {g}# ⇐⇒ {f }## ⊆ {g}#

⇐⇒ g ∈ {f }# ⇐⇒ {g}## ⊆ {f }#.
(2.1)

From now on, we will call assaying subspace of V a subspace S such that S## = S and
denote by F(V , #) the family of all assaying subsets of V, ordered by inclusion. Let F be the
isomorphy class of F, that is, F considered as an abstract partially ordered set. Elements of F
will be denoted by r, q, . . . , and the corresponding assaying subsets Vr, Vq, . . . . By definition,
q � r if and only if Vq � Vr. We also write Vr = V #

r , r ∈ F. Thus the relations (2.1) mean
that f #g if and only if there is an index r ∈ F such that f ∈ Vr, g ∈ Vr. In other words,
vectors should not be considered individually, but only in terms of assaying subspaces, which
are the building blocks of the whole structure.

It is easy to see that the map S �→ S## is a closure, in the sense of universal algebra, so
that the assaying subspaces are precisely the ‘closed’ subsets. Therefore one has the following
standard result [8].

Theorem 2.2. The family F(V , #) = {Vr, r ∈ F } of all assaying subspaces, ordered by
inclusion, is a complete involutive lattice, under the following operations:

∧
j∈J

Vj =
⋂
j∈J

Vj ,
∨
j∈J

Vj =
⎛
⎝∑

j∈J

Vj

⎞
⎠

##

, for any subset J ⊂ F, (2.2)

and the involution Vr ↔ Vr = (Vr)
#. Moreover, the involution is a lattice anti-isomorphism,

that is,

(Vr ∧ Vs)
# = Vr ∨ Vs, (Vr ∨ Vs)

# = Vr ∧ Vs.

The smallest element of F(V , #) is V # = ⋂
r Vr and the greatest element is V = ⋃

r Vr . By
definition, the index set F is also a complete involutive lattice; for instance,

(Vp∧q)
# = Vp∧q = Vp∨q = Vp ∨ Vq.

Definition 2.3. A partial inner product on (V , #) is a Hermitian form 〈·|·〉 defined exactly on
compatible pairs of vectors. A partial inner product space (PIP-space) is a vector space V

equipped with a linear compatibility and a partial inner product.

Note that the partial inner product is not required to be positive definite. Nevertheless, the
partial inner product clearly defines a notion of orthogonality : f ⊥ g if and only if f #g and
〈f |g〉 = 0.

Definition 2.4. The PIP-space (V , #, 〈·|·〉) is nondegenerate if (V #)⊥ = {0}, that is, if
〈f |g〉 = 0 for all f ∈ V # implies g = 0.

From now on, we will assume that our PIP-space (V , #, 〈·|·〉) is nondegenerate. As a
consequence, (V #, V ) and every couple (Vr, Vr), r ∈ F, are a dual pair in the sense of
topological vector spaces [17, 22]. We also assume that the partial inner product is positive
definite.
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Now, one wants the topological structure to match the algebraic structure. This means, in
particular, that the topology t(Vr) of Vr must be such that the dual of Vr is precisely Vr, that
is, t(Vr) is a topology of the dual pair 〈Vr, Vr〉. Therefore t(Vr) must be finer than the weak
topology σ(Vr, Vr) and coarser than the Mackey topology τ(Vr, Vr):

σ(Vr, Vr) � t(Vr) � τ(Vr, Vr).

Assumption. From here on, we will assume that every Vr carries its Mackey topology
τ(Vr, Vr).

This choice has two interesting consequences. First, if Vr [t(Vr)] is a Hilbert space or a
reflexive Banach space, then τ(Vr, Vr) coincides with the norm topology. Next, r < s implies
Vr ⊂ Vs, and the embedding operator Esr : Vr → Vs is continuous and has a dense range. In
particular, V # is dense in every Vr.

2.2. Examples

Let us give two simple examples of PIP-spaces.

(i) Sequence spaces
Let V be the space ω of all complex sequences x = (xn) and define on it (i) a
compatibility relation by x#y ⇔ ∑∞

n=1 |xnyn| < ∞; (ii) a partial inner product 〈x|y〉 =∑∞
n=1 xnyn (x#y).

Then ω# = ϕ, the space of finite sequences, and the complete lattice F(ω, #) consists
of Köthe’s perfect sequence spaces [[17], section 30]. Among these, typical assaying
subspaces are the weighted Hilbert spaces


2(r) =
{

(xn) :
∞∑

n=1

|xn|2r−1
n < ∞

}
, (2.3)

where r = (rn), rn > 0, is a sequence of positive numbers. The involution is

2(r) ↔ 
2(r) = 
2(r)×, where rn = 1/rn. In addition, there is a central, self-dual Hilbert
space, namely, 
2(1) = 
2(1) = 
2, where 1 denotes the unit sequence, rn = 1,∀ n.

(ii) Spaces of locally integrable functions
Now let V be L1

loc(R, dx), the space of Lebesgue measurable functions, integrable over
compact subsets. Define a compatibility relation on it by f #g ⇔ ∫

R
|f (x)g(x)| dx < ∞

and a partial inner product 〈f |g〉 = ∫
R

f (x)g(x) dx (f #g).

Then V # = L∞
c (R), the space of bounded measurable functions of compact support.

The complete lattice F
(
L1

loc, #
)

consists of Köthe function spaces [12, 13]. Here again,
typical assaying subspaces are weighted Hilbert spaces

L2(r) =
{
f ∈ L1

loc(R, dx) :
∫

R

|f (x)|2r(x)−1 dx < ∞
}

, (2.4)

with r, r−1 ∈ L1
loc(R, dx), r(x) > 0 a.e. The involution is L2(r) ↔ L2(r), with r = r−1,

and the central, self-dual Hilbert space is L2(R, dx).

2.3. Lattices of Hilbert or Banach spaces

From the previous examples, we learn that F(V , #) is a huge lattice (it is complete!) and that
assaying subspaces may be complicated, such as Fréchet spaces, nonmetrizable spaces, etc.
This situation suggests choosing a sublattice I ⊂ F, indexed by I, such that

5
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(i) I is generating:

f #g ⇔ ∃ r ∈ I such that f ∈ Vr, g ∈ Vr; (2.5)

(ii) every Vr, r ∈ I, is a Hilbert space or a reflexive Banach space;
(iii) there is a unique self-dual, Hilbert, assaying subspace Vo = Vo.

In that case, the structure VI := (V , I, 〈·|·〉) is called, respectively, a lattice of Hilbert spaces
(LHS) or a lattice of Banach spaces (LBS). Both types are particular cases of the so-called
indexed PIP-spaces [4], but they are sufficient for our present purposes. Note that V #, V

themselves usually do not belong to the family {Vr, r ∈ I }, but they can be recovered as
V # = ⋂

r∈I Vr , V = ∑
r∈I Vr .

In the LBS case, the lattice structure takes the following form:

• Vp∧q = Vp ∩ Vq, with the projective norm ‖f ‖p∧q = ‖f ‖p + ‖f ‖q;
• Vp∨q = Vp + Vq, with the inductive norm ‖f ‖p∨q = inff =g+h(‖g‖p + ‖h‖q), g ∈ Vp,

f ∈ Vq.

These norms are usual in interpolation theory [7]. In the LHS case, one takes similar definitions
with squared norms, in order to get Hilbert norms throughout.

2.4. Examples

We list a series of concrete examples of LBSs. For simplicity, we restrict ourselves to one
dimension, although most spaces may be defined on R

n, n > 1, as well.

(i) Scales of Hilbert or Banach spaces

(a) The Lebesgue Lp spaces on a finite interval, e.g. I = {Lp([0, 1], dx), 1 � p � ∞}
L∞ ⊂ . . . ⊂ Lq ⊂ Lr ⊂ . . . ⊂ L2 ⊂ . . . ⊂ Lr ⊂ Lq ⊂ . . . ⊂ L1, (2.6)

where 1 < q < r < 2. Here Lq and Lq are dual to each other (1/q + 1/q = 1), and
similarly Lr, Lr(1/r + 1/r = 1). By the Hölder inequality, the (L2) inner product

〈f |g〉 =
∫ 1

0
f (x)g(x) dx (2.7)

is well-defined if f ∈ Lq, g ∈ Lq. However, it is not well-defined for two arbitrary
functions f, g ∈ L1. Take, for instance, f (x) = g(x) = x−1/2. Then f ∈ L1, but
fg = f 2 �∈ L1. Thus, on L1, (2.7) defines only a partial inner product. The same result
holds for any compact subset of R instead of [0,1].

The corresponding lattice completion is obtained by adding ‘nonstandard’ spaces, such
as

Lp− =
⋂

1<q<p

Lq (non-normable Fréchet), Lp+ =
⋃

p<q<∞
Lq (nonmetrizable).

(b) The scale of Hilbert spaces built on the powers of a positive self-adjoint operator A � 1
in a Hilbert space H0:

Let Hn be D(An), the domain of An, equipped with the graph norm ‖f ‖n = ‖Anf ‖, f ∈
D(An), for n ∈ N or n ∈ R

+, and H−n = H×
n (conjugate dual):

H∞(A) :=
⋂
n

Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H−1 ⊂ H−2 . . . ⊂ H−∞(A) :=
⋃
n

Hn. (2.8)

Note that here the index n may be integer or real, the link between the two cases being
established by the spectral theorem for self-adjoint operators. Here again the inner product of
H0 extends to each pair Hn,H−n, but on H−∞(A) it yields only a partial inner product. The
following examples, all three in H0 = L2(R, dx), are standard:

6
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• (Apf )(x) = (1 + x2)1/2f (x);

• (Amf )(x) = (
1 − d2

dx2

)1/2
f (x);

• (Aoscf )(x) = (
1 + x2 − d2

dx2

)
f (x).

(The notation is suggested by the operators of position, momentum and harmonic oscillator
energy in quantum mechanics, respectively.) In the case of Am, the intermediate spaces are
the Sobolev spaces Hs(R), s ∈ Z or R. Note that both H∞(Ap) ∩ H∞(Am) and H∞(Aosc)

coincide with the Schwartz space S(R) of smooth functions of fast decay, and H−∞(Aosc)

with the space S×(R) of tempered distributions.
The lattice completion of this scale is similar to that of the previous one.

(ii) Sequence spaces
In ω, we may take the lattice I = {
2(r)} of the weighted Hilbert spaces defined in (2.3),

with

• infimum: 
2(p ∧ q) = 
2(p) ∧ 
2(q) = 
2(r), rn = min(pn, qn),

• supremum: 
2(p ∨ q) = 
2(p) ∨ 
2(q) = 
2(s), sn = max(pn, qn),

• duality: 
2(p ∧ q) ↔ 
2(p ∨ q)
2(p ∨ q) ↔ 
2(p ∧ q)

(the norms above are equivalent to the projective and inductive norms, respectively).

(iii) Spaces of locally integrable functions
In L1

loc(R, dx), we may take the lattice I = {L2(r)} of the weighted Hilbert spaces defined
in (2.3), with

• infimum: L2(p ∧ q) = L2(p) ∧ L2(q) = L2(r), r(x) = min(p(x), q(x)),

• supremum: L2(p ∨ q) = L2(p) ∨ L2(q) = L2(s), s(x) = max(p(x), q(x)),

• duality: L2(p ∧ q) ↔ L2(p ∨ q), L2(p ∨ q) ↔ L2(p ∧ q).

(iv) The spaces Lp(R, dx), 1 < p < ∞
The spaces Lp(R, dx), 1 < p < ∞ do not constitute a scale, since one has only the inclusions
Lp ∩ Lq ⊂ Ls, p < s < q. Thus one has to consider the lattice they generate, with the
following lattice operations:

• Lp ∧ Lq = Lp ∩ Lq , with the projective norm ;
• Lp ∨ Lq = Lp + Lq, with the inductive norm ;
• For 1 < p, q < ∞, both spaces Lp ∧ Lq and Lp ∨ Lq are reflexive Banach spaces and

(Lp ∧ Lq)′ = Lp ∨ Lq, (Lp ∨ Lq)′ = Lp ∧ Lq.

The result is that one gets a genuine lattice of Banach spaces, reflexive for 1 < p, q < ∞.

3. Operators on PIP-spaces

3.1. Basic idea

As already mentioned, the basic idea of (indexed) PIP-spaces is that vectors should not be
considered individually, but only in terms of the subspaces Vr (r ∈ F or r ∈ I ), the building
blocks of the structure, see (2.5). Correspondingly, an operator on a PIP-space should be
defined in terms of assaying subspaces only, with the proviso that only bounded operators
between Hilbert or Banach spaces are allowed. Thus an operator is a coherent collection of
bounded operators. More precisely:

Definition 3.1. Given a LHS or LBS VI = {Vr, r ∈ I }, an operator on VI is a map from a
subset D ⊆ V into V, where

7
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p

I

qI

J(A)

q < q

p > p

(q, p)

D(A) qmax

pmin

I(A)

Figure 1. Characterization of an operator in the case of a scale.

(i) D is a nonempty union of assaying subsets of VI ;

(ii) for every assaying subset Vq contained in D, there exists a p ∈ I such that the restriction
of A to Vq is linear and continuous into Vp (we denote this restriction by Apq);

(iii) A has no proper extension satisfying (i) and (ii), i.e., it is maximal.

(A proper extension of A satisfying (i) and (ii) would be a map A′ defined on a union of
assaying subsets D′ ⊃ D, coinciding with A on D, linear and continuous on every assaying
subset in its domain.)

The linear bounded operator Apq : Vq → Vp is called a representative of A. In terms of
the latter, the operator A may be characterized by the set J (A) := {(q, p) ∈ I ×I : Apqexists}.
Thus the operator A may be identified with the collection of its representatives,

A � {Apq : Vq → Vp : (q, p) ∈ J (A)}.
We also need the two sets obtained by projecting J (A) on the ‘coordinate’ axes, namely,

D(A) := pr1J (A) = {q ∈ I : there is a p such thatApq exists},
I (A) := pr2J (A) = {p ∈ I : there is a q such thatApq exists},

where pr1 and pr2 denote the first and the second projection, respectively, of a set in the
Cartesian product I × I.

The following properties are immediate:

• D(A) is an initial subset of I: if q ∈ D(A) and q ′ < q, then q ′ ∈ D(A), and
Apq ′ = ApqEqq ′ , where Eqq ′ is a representative of the unit operator (this is what we
mean by a ‘coherent’ collection).

• I (A) is a final subset of I: if p ∈ I (A) and p′ > p, then p′ ∈ I (A) and Ap′q = Ep′pApq.

• J (A) ⊂ D(A) × I (A), with strict inclusion in general.

We denote by Op(VI ) the set of all operators on VI . Of course, a similar definition may be
given for operators A : VI → YK between two LHSs or LBSs.

In the case of a scale, all the sets described above, which characterize an operator A, are
displayed on the diagram of figure 1.

8
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3.2. Algebraic operations on operators

Since V # is dense in Vr, for every r ∈ I, an operator may be identified with a separately
continuous sesquilinear form on V # × V #. Indeed, the restriction of any representative Apq

to V # × V # is such a form, and all these restrictions coincide. Equivalently, an operator may
be identified with a continuous linear map from V # into V (continuity with respect to the
respective Mackey topologies).

But the idea behind the notion of operator is to keep also the algebraic operations on
operators, namely:

(i) Adjoint A∗: every A ∈ Op(VI ) has a unique adjoint A∗ ∈ Op(VI ), defined by the relation

〈A∗x|y〉 = 〈x|Ay〉, for y ∈ Vr, r ∈ D(A), and x ∈ Vs, s ∈ I (A),

that is, (A∗)rs = (Asr)
∗ (usual Hilbert/Banach space adjoint). In other words, J (A∗) =

{(s, r) ∈ I × I : (r, s) ∈ J (A)}.
It follows that A∗∗ = A, for every A ∈ Op(VI ): no extension is allowed, by the

maximality condition (iii) of definition 3.1.

(ii) Partial multiplication: AB is defined if and only if there is a q ∈ I (B) ∩ D(A), that is,
if and only if there is a continuous factorization through some Vq :

Vr
B−→ Vq

A−→ Vs, i.e., (AB)sr = AsqBqr .

It is worth noting that, for a LHS/LBS, the domain D of an operator is always a vector
subspace of V (this is not true for a general PIP-space). Therefore, Op(VI ) is a vector space
and a partial *-algebra [5].

The concept of PIP-space operator is very simple, yet it is a far reaching generalization of
bounded operators. It allows indeed to treat on the same footing all kinds of operators, from
bounded ones to very singular ones. By this, we mean the following, loosely speaking. Take

Vr ⊂ Vo � Vo ⊂ Vs (Vo = Hilbert space).

Three cases may arise:

• if Aoo exists, then A corresponds to a bounded operator Vo → Vo;

• if Aoo does not exist, but only Aor : Vr → Vo, with r < o, then A corresponds to an
unbounded operator, with Hilbert space domain containing Vr ;

• if no Aor exists, but only Asr : Vr → Vs, with r < o < s, then A corresponds to a
singular operator, with Hilbert space domain possibly reduced to {0}.
A nice application of this machinery is a rigorous analysis of singular quantum

Hamiltonians (e.g. rigorous versions of the Kronig–Penney crystal model or of δ interactions)
[15].

4. Special classes of operators on PIP-spaces

Exactly as for Hilbert or Banach spaces, one may define various types of operators between
PIP-spaces, in particular LBS/LHS.

9
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4.1. Regular operators

An operator A is called regular if D(A) = I (A) = I or, equivalently, if A : V # → V # and A :
V → V continuously for the respective Mackey topologies. This notion depends only on the
pair (V #, V ), not on the particular compatibility #. The set of all regular operators VI → VI

is denoted by Reg(VI ). Thus a regular operator may be multiplied both on the left and on the
right by an arbitrary operator. Clearly, the set Reg(VI ) is a *-algebra [19].

We give two examples.

(1) If V = ω, V # = ϕ, then Op(ω) consists of arbitrary infinite matrices and Reg(ω) of
infinite matrices with finite rows and finite columns.

(2) If V = S×, V # = S, then Op(S×) consists of arbitrary tempered kernels, while Reg(S×)

contains those kernels that can be extended to S× and map S into itself. A nice example
is the Fourier transform.

4.2. *-Algebras of operators

(i) An operator A is called totally regular if J (A) contains the diagonal of I × I, i.e., Arr

exists for every r ∈ I or A maps every Vr into itself continuously. We denote by A(VI )

the set of all totally regular operators VI → VI . Clearly A(VI ) is a *-algebra.
(ii) We define B(VI ) = {A ∈ A(VI ) : ‖A‖B := supr∈I ‖Arr‖r < ∞}. Then one can show

that B(VI ) is a Banach algebra for the norm ‖ · ‖B [19].
(iii) In the LHS case, we define C(VI ) = {A ∈ B(VI ) : ∀ r ∈ I, Arr = urrArrurr}, where

urr : Vr → Vr is the Riesz unitary map between the Hilbert space Vr and its conjugate
dual Vr. Then one shows that C(VI ) is a von Neumann algebra.

Thus we get

A(VI ) ⊃ B(VI ) ⊃ C(VI ).

We know that a von Neumann algebra is always generated by its projections. As explained in
the next section, it turns out that the Hilbert space definition of a projection extends to PIP-
spaces, with similar properties, including the one-to-one correspondence with appropriate
subspaces. Thus the interest of C(VI ) (and the motivation for introducing it) is to show, in the
LHS case, the existence of sufficiently many projections and/or subspaces.

4.3. Orthogonal projections

An operator P on a nondegenerate PIP-space V, resp. a LBS/LHS VI , is an orthogonal
projection if P is totally regular and P 2 = P = P∗ [3]. We denote by Proj(V ) the set of
all orthogonal projections in V and similarly for Proj(VI ). It turns out that Proj(V ), resp.
Proj(VI ), is a partially ordered set, as in a Hilbert space. However, it is a lattice only under
additional conditions, yet to be determined, the problem is still open.

These projection operators enjoy several properties similar to those of Hilbert space
projectors. Two of them are of special interest in the present context.

(i) Given a nondegenerate PIP-space V, there is a natural notion of PIP-subspace, called
orthocomplemented, which guarantees that such a subspace W of V is again a
nondegenerate PIP-space with the induced compatibility relation and the restriction of the
partial inner product. Then the basic theorem about projections states that a PIP-subspace
W of V is orthocomplemented if and only if W is the range of an orthogonal projection
P ∈ Proj(V ), i.e., W = PV. Then V = W ⊕ Z, where Z is another orthocomplemented
PIP-subspace.

10
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(ii) An orthogonal projection P is of finite rank if and only if W = RanP ⊂ V # and
W ∩ W⊥ = {0} (this second condition is, of course, superfluous when the partial inner
product is positive definite, as it is the case here).

Property (ii) has important consequences for the structure of bases. First we recall that
a sequence {en, n = 1, 2, . . .} of vectors in a Banach space E is a Schauder basis if, for
every f ∈ E, there exists a unique sequence of coefficients {ck, k = 1, 2, . . .} such that
limm→∞

∥∥f − ∑m
k=1 ckek

∥∥ = 0. Then one may write

f =
∞∑

k=1

ckek. (4.1)

The basis is unconditional if the series (4.1) converges unconditionally in E (i.e., it keeps
converging after an arbitrary permutation of its terms).

For instance, a standard problem is to find a sequence of functions that is an unconditional
basis for all the spaces Lp(R), 1 < p < ∞. In the PIP-space language, this statement means
that the basis vectors must belong to V # = ∩1<p<∞Lp(R). Also, since (4.1) means that f

may be approximated by finite sums, property (ii) of orthogonal projections implies that all
the basis vectors must belong to V #. Actually, some wavelet bases solve the Lp basis problem
[11].

Similar considerations apply to frames. We recall here that a frame in a Hilbert space H

is a family of vectors {ej , j ∈ J } for which there exist two constants 0 < m � M < ∞ such
that

m‖f ‖2 �
∑
j∈J

|〈ej |f 〉|2 � M‖f ‖2. (4.2)

The frame is called tight if m = M. It turns out that frames and, in particular, tight frames
are often good substitutes for orthogonal bases for representing an arbitrary vector by a fast
converging expansion f = ∑

j∈J cj ej (e.g. in the theory of wavelets [11]).

4.4. Homomorphisms, isomorphisms, and all that

An operator A : VI → VI is called a homomorphism if pr1(J (A) ∩ J (A)) = I and
pr2(J (A) ∩ J (A)) = I, where J (A) = {(r, s) : (r, s) ∈ J (A)}. In words, for every r ∈ I,

there exists r ′ ∈ I such that (r, r ′) ∈ J (A) and (r, r ′) ∈ J (A), and for every r ′ ∈ I, there exists
r ∈ I with the same property. The second condition means that, if A is a homomorphism, A∗
is also one. We denote by Hom(VI ) the set of all homomorphisms VI → VI . One has easily
[14]:

• A ∈ Hom(VI ) if and only if A∗ ∈ Hom(VI ).

• The product of any number of homomorphisms is defined and is a homomorphism.
• If B0 and Bn+1 are arbitrary operators and if A1, . . . , An are homomorphisms, then the

product of n + 2 factors B0A1, . . . , AnBn+1 is defined.
• If A ∈ Hom(VI ), then f #g implies Af #Ag.

• Hom(VI ) ⊃ A(VI ).

• If A ∈ Hom(VI ), then A∗A is defined and A∗A ∈ A(VI ).

Note that we can now also define an orthogonal projection in VI as a homomorphism that
satisfies the relations P 2 = P = P∗.

Similar definitions may be given for Hom(VI , YK), the set of homomorphisms between
two LHS VI , YK. Of course, if A ∈ Hom(VI , YK), then A∗ ∈ Hom(YK, VI ).

11
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An operator A is an isomorphism if A ∈ Hom(VI ) and there is a homomorphism
B ∈ Hom(VI ) such that AB = BA = I, the identity operator.

An operator U is unitary if U∗U and UU∗ are defined and U∗U = UU∗ = I. We
emphasize that a unitary operator need not be a homomorphism. In fact, as we will see now,
unitary isomorphisms are the natural setting for group representations in a LHS.

5. Realization of symmetries in PIP-spaces

Assume now that the state space of a given quantum system is a (nondegenerate, positive
definite) PIP-space VI , with central Hilbert space Ho.

Suppose the system has a symmetry group G. According to Wigner and Bargmann (see
section 1.1), there exists a unitary representation Uo of G in Ho:

UoU
∗
o = U∗

o Uo = Io, the identity operator in Ho.

Therefore, Uo must extend to a unitary representation U in VI .

In virtue of the conservation of transition amplitudes, if ψ2#ψ1, one must have
U(g)ψ2#U(g)ψ1,∀ g ∈ G, and

〈U(g)ψ2|U(g)ψ1〉 = 〈ψ2|ψ1〉.
Since U(g)∗ = U(g−1), this implies that U(g) must be totally regular, ∀ g ∈ G. Thus, one
must require that U is a representation of G by unitary, totally regular automorphisms of VI .

To give a simple example, let VI be the scale built on the powers of the Hamiltonian
H = −� + V (r), with V (r) a (nice) rotation invariant potential. The system admits as
symmetry group G = SO(3) and the representation Uo is the natural representation of SO(3)
in L2(R3):

[Uo(R)ψ] (x) = ψ(R−1x), R ∈ SO(3).

Then one has:

• Uo extends to a unitary representation U by totally regular automorphisms of VI .

• Angular momentum decompositions extend to VI as well.
• This is a good setting also for representations of the Lie algebra so(3).

The same analysis applies to internal symmetries, if any, and discrete symmetries, such as
space or time reflection.

6. Outcome

PIP-spaces yield a framework suitable for the description of quantum systems and their
symmetry properties. They generalize both the traditional Hilbert space approach and the
rigged Hilbert space approach, yet the mathematics involved is simpler, there is no need for
sophisticated functional analysis concepts. Clearly, much work remains to be done, more
realistic examples should be analyzed. Of particular interest are, of course, singular or infinite
dimensional systems.
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[10] Böhm A and Gadella M 1989 Dirac Kets, Gamow Vectors and Gel’fand Triplets (Lecture Notes in Physics

vol 348) (Berlin: Springer)
[11] Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia, PA: SIAM)
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